Energy Management Training for State Agencies and Higher Education

Workshop #2: Optimizing Energy Performance for Fall

A tele-workshop brought to you by:

Colorado Governor's Office of Energy Management and Conservation

October 18, 2006

Your Rebuild Colorado State Team

- Working with Rebuild Colorado
 - Linda Smith, OEMC Senior Program Manager (303-866-2264)
 - Your State Department Liaison Terry Yergensen (719-200-6609)
 - Your Higher Education Liaison –Tom Cowing (303-772-4414)
- Rebuild Colorado Support Team
 - Energy Management Specialists (Tom Cowing, Terry Yergensen, Peter D'Antonio)
 - Utilities Specialists (Tom Cowing, Terry Yergensen)
 - LEED Specialist (Peter D'Antonio)
 - Training Program Coordinator (Peter D'Antonio)
 - Commissioning Specialist (Peter D'Antonio)
 - Performance Contracting Specialists (Peter Oatman, John Canfield)
- Working in partnership with Office of State Architect

Optimizing Energy for Fall (& Winter)

Tips and strategies for energy conservation without comfort curtailment...

Prepared & presented by:

Gary Berngard, Manager of Business Development Honeywell Building Solutions Tel 303-442-5700 Mobile 303-589-5219

Agenda

- 1. Managing the collar season
- 2. Essentials of an energy management plan
- 3. In the absence of a plan...
- 4. Common energy management and control system optimization strategies
- 5. Open Q&A

Educator & Consultant

IF YOU'RE NOT A PART OF THE SOLUTION,
THERE'S GOOD MONEY TO BE MADE IN PROLONGING THE PROBLEM.

Managing the collar season

- Not uncommon to experience comfort swings in the fall and spring as outside weather changes dictate load changes from heating-to-cooling-to-heating-to-cooling...
- In a perfect world (not mine or yours), everything would occur automatically, efficiently and you wouldn't get any hot/cold calls as the weather changes...
- How do you manage weather swings without
 - Disrupting comfort
 - Stressing HVAC equipment
 - Increasing energy consumption

The order of things...

- 1. Comfort & safety
- 2. Protect equipment
- 3. Control operating costs (energy, maintenance & repairs, etc.)

Managing comfort as outside weather swings...

- Have mechanical heating & cooling in "hot standby"
- Know the limitations and capabilities of your
 - HVAC and controls systems
 - Building envelope
- Watch the weather forecasts
- Adjust start times in response to unoccupied (nighttime) outside temperatures & daytime cloud cover

Managing comfort as outside weather swings (cont.) ...

- Be aware of "mass temperature" phenomena, particularly on morning start-up
 - Much easier to manage air temp than mass temp
 - Thermal lag, especially on 2-pipe systems
- Have contingency plans in the event of unavailability of primary heating/cooling equipment
 - Manually adjust outside air quantities
 - Adjust primary (VAV) fan volumes

Avoiding HVAC equipment stress as weather swings...

- Make sure equipment had had proper seasonal start-up and tune-up
 - Combustion efficiency
 - Heat exchanger cleaning
 - Calibration of operating & safety controls
- Low load on boilers, chillers and DX cooling can cause undesired short cycling (= excessive wear and tear)
 - Match part load to the right equipment
 - Modulate supply air and/or water temperatures (manually or automatically) to keep load on primary heating/cooling sources

Optimizing energy as weather swings...

- Adjust start times in response to unoccupied (nighttime) temperatures
- Utilize outside air for free cooling
- Adjust temperatures in response to reduced load
 - Supply air temperatures
 - Heating and cooling supply water temperatures

NOTE: Be cautious that you don't defeat variable air volume and/or variable flow pumping systems

Avoid or minimize simultaneous heating/cooling

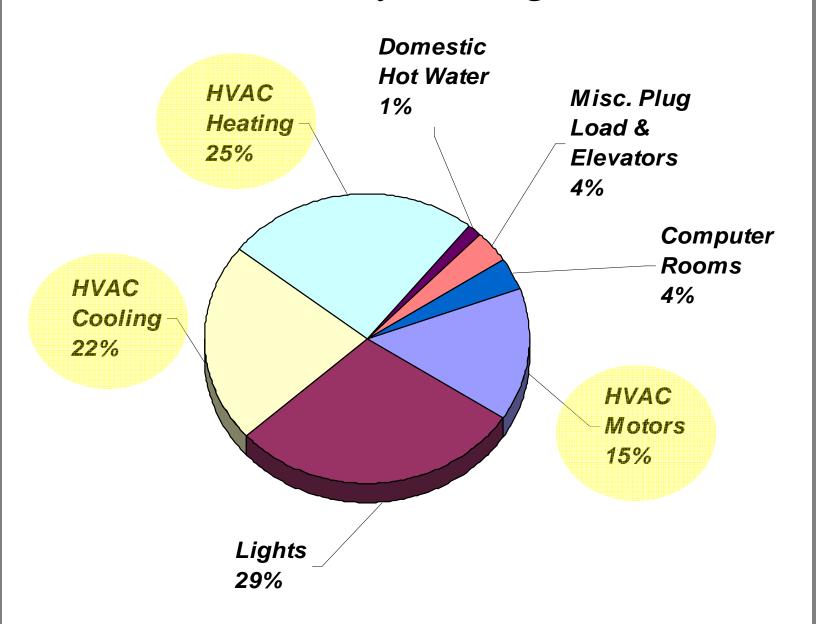
Summary...

- Know your equipment & limitations
 - Likelihood of effective automatic operation without human intervention
 - Ability to satisfy loads as weather changes
 - Part load & efficiency matching
- Tune-up, calibrate, etc.
- Know your issues and challenges in terms of pre-existing problems
- Pay attention to the impact of changing weather
- Comfort, process and safety 1st... Then energy efficiency

BLAME

THE SECRET TO SUCCESS IS KNOWING WHO TO BLAME FOR YOUR FAILURES.

It must be those darn controls again !!!


Energy Management Plan Basics

- 1. Establishing internal alignment around goals, expectations, timing, etc.
- 2. Establishing a baseline of past consumption, demand & cost.
- 3. Benchmarking against a relevant data set
- 4. Doing an "end-use" analysis to establish the biggest pieces of the pie
- 5. Conduct a preliminary assessment
- 6. Document required standards of comfort, process & operations
- 7. Know what you want to do with savings
- 8. Dive into the details to look for savings opportunities

End Use Analysis – Big Hitters

Know what you want to do with the savings...

- Net reduction in operating costs
 - Just looking for low cost ways to reduce energy costs
 - Not concerned about asset renewal, fixing problems, etc.
- Use savings to pay for needed improvements
 - "Performance contracting" model, where you use guaranteed savings to pay for both energy and other needed infrastructure improvements
- Once you use them, you lose them (i.e. not available to reallocate to other purposes)

In the absence of a plan...

- Document (for yourself) goals & requirements for
 - Standard building hours, including
 - Occupancy profile by HVAC area served...
 - Process occupants must follow to get more...
 - Occupied & unoccupied temperatures
 - Space temperature
 - Heating system operating parameters
 - Cooling system parameters
 - Process occupants must follow to get more...

In the absence of a plan... (cont.)

- Establish & implement a seasonal tune-up plan
 - Tasks
 - Labor & material resources needed
- Calibrate all relevant primary equipment operating and safety controls
- Re-commission for functional sequence of operations
- Document work performed & problems
- Tell your story

LIMITATIONS

Until You Spread Your Wings, You'll Have No Idea How Far You Can Walk.

Common energy management & control system optimization strategies

- 1. Scheduled on/off operation
- 2. Night setback or setup of space temperature
- 3. Optimal start
- 4. Demand control of ventilation rates
- 5. Supply air temperature reset
- 6. Reset of comfort and/or process heating & cooling supply water
- 7. Steam supply pressure reset
- 8. Condenser water temperature reset for chilled water & refrigeration systems
- 9. Demand limiting (load shed)

Scheduled on/off operation

- Description
 - Using some form of automatic timer to shut off equipment when it is not needed based on time-of-day and day-of-week
- Do's -
 - Turn it off when it's not needed
 - Turn it back on in time to meet occupied comfort standards
- Don'ts
 - Disable automatic operation
 - Create comfort or indoor air quality problems
 - Create unnecessary or undesired thermal expansion/contraction

Common EMS Energy Savings Strategies

Night setback or setup of space temperature

- Description
 - Using strategically placed space temperature sensors to allow for HVAC to shut down during unoccupied periods without losing ability to warm up or cool down in time for morning occupancy
- **Do's**
 - Setback in the winter; setup in the summer
 - The colder it gets... the higher the setback
 - Take advantage of outside air temps for warm-up/cool-down, night purge, etc.
- **Don'ts**
 - Lose your load…

Optimal start

- Description
 - Using a smart system to automatically adjust start-up times to the last possible moment and still reach desired occupancy temperature
- Do's -
 - Let it work
 - Fine tune
- Don'ts
 - Disable automatic operation
 - Create comfort problems by ignoring mass temperature issues

Common EMS Energy Savings Strategies

Demand control of ventilation rates

- Description
 - Minimum outside air quantities are designed for worst case (full) occupancy.
 - Can use CO₂ sensors and/or time-of-day and event scheduling to adjust minimums
- Do's -
 - Reduce minimum outside air settings when reasonable
 - Do so in compliance with code
- Don'ts
 - Under-ventilate
 - Compromise automatic free cooling economizer

Supply air temperature reset

- Description
 - In many cases, supply air set for constant temp based on worst case (design) heating/cooling load
 - VAV systems
 - Constant volume reheat
 - Double duct systems
 - Reasonable to reset (automatically or manually) when load is not at summer/winter design

Scheduled on/off operation

- Description
 - Using some form of automatic timer to shut off equipment when it is not needed based on time-of-day and day-of-week
- **Do's**
 - Turn it off when it's not needed
- Don'ts
 - Disable automatic operation
 - Create comfort problems
 - Create unnecessary or undesired thermal expansion/contraction

Supply air temperature reset (cont.)

- Do's -
 - Reset when you can...
 - Consider impact reset will have on other system dynamics, e.g.
 reset of supply air temp on VAV system may cause fan to speed up...
 - Know where your worst case load is...
- Don'ts
 - Kick the energy can around (e.g. VAV example above)
 - Make a manual adjustment that defeats the "automatic" operation of your control system

Scheduled on/off operation

- Description
 - Using some form of automatic timer to shut off equipment when it is not needed based on time-of-day and day-of-week
- Do's
 - Turn it off when it's not needed
- **Don'ts**
 - Disable automatic operation
 - Create comfort problems
 - Create unnecessary or undesired thermal expansion/contraction

Reset of comfort heating & cooling supply water

- Description
 - Similar to supply air temp control (typically designed for worst case load)
 - OK to adjust when at less than full load
- Do's
 - Reset when you can...
 - Consider impact reset will have on other system dynamics, e.g. reset of supply air temp on VAV system may cause fan to speed up...
 - Know where your worst case load is...
- Don'ts
 - Kick the energy can around (e.g. VAV example above)
 - Make a manual adjustment that defeats the "automatic" operation of your control system

Steam supply pressure reset

- Description
 - Similar to supply air or water temp control (typically designed for worst case load)
 - OK to adjust when at less than full load
- Do's
 - Reset when you can...
 - Consider impact reset will have on other system dynamics, e.g. fixed orifice steam traps...
 - Know where your worst case load is...
- **Don'ts**
 - Kick the energy can around
 - Make a manual adjustment that defeats the "automatic" operation of your control system

Condenser water temperature reset for chilled water systems

- Description
 - Condenser water temp typically set for constant value based on worst case cooling load.
 - Reducing condenser water temp will lower head pressures and decrease compressor energy use
- **Do's**
 - Know what your chiller system can handle
 - Lower is better...
- Don'ts
 - Let condenser water temp get too low could cause oil migration, unstable compressor operation, short cycling, etc.

Demand limiting (load shed)

- Description
 - Monitoring peak demand and shedding non-essential electrical load to reduce peak demand charges
- **Do's**
 - Use if you're on a demand rate structure
 - Identify "sheddable" loads
- Don'ts
 - Compromise comfort
 - Short-cycle equipment

Closing presentation comments...

- Lots you can do to efficiently maintain comfort
 - Automatic & manual...
- Weather swings create challenges = opportunities
- Work smart, know your limitations
 - Resources
 - HVAC equipment & building envelope
- Have a plan & work it
- Ask for help if you need it

Closing presentation comments... (cont.)

- Remember the order of things
 - 1. Comfort & safety
 - 2. Protect equipment
 - 3. Control operating costs (energy, maintenance & repairs, etc.)

AMBITION

THE JOURNEY OF A THOUSAND MILES SOMETIMES ENDS VERY, VERY BADLY.

Open Q & A

WISHES

WHEN YOU WISH UPON A FALLING STAR, YOUR DREAMS CAN COME TRUE.
UNLESS IT'S REALLY A METEORITE HURTLING TO THE EARTH WHICH WILL DESTROY ALL LIFE.
THEN YOU'RE PRETTY MUCH HOSED NO MATTER WHAT YOU WISH FOR. UNLESS IT'S DEATH BY METEOR.

Optimizing Energy for Fall & Winter

Thanks for your participation, good luck this fall/winter and please feel free to call if we can be of any assistance !!!

Prepared & presented by:

Gary Berngard, Manager of Business Development Honeywell Building Solutions Tel 303-442-5700 Mobile 303-589-5219

E-Mail gary.berngard@honeywell.com

